
product

Information on oil and dual-fuel burners

WM burners with oil preheating

A burning passion for quality

Test-firing chambers for medium and large-sized burners at the Weishaupt Research & Development Centre

For more than six decades Weishaupt's monarch® series burners have been used on a wide variety of heat exchangers and industrial plant, and their success has helped underpin Weishaupt's outstanding reputation.

WM-GS and WM-S burners are designed to fire liquid fuels which cannot be atomised without preheating because of their viscosity. That includes fossils fuels like MFO and HFO, and – subject to prior works approval – biogenic fuels.

All monarch® burners are renowned for their quality and their state-of-the-art technology. Choosing a Weishaupt burner is always a future-proof investment.

Fossil and biogenic fuels

Higher-viscosity liquid fuels have many different origins. Fossil fuels include residual oils, such as MFO and HFO. Liquid biogenic fuels are predominantly oils produced from rapeseed, soya beans, sunflowers, and oil palms.

Petroleum

The composition of the oils supplied by oilfields around the world vary greatly. They vary in viscosity, sulphur content, water content, and the mix of other constituents. However, they are all hydrocarbon compounds.

Heavy fuel oil

Heavy fuel oil, also referred to as HFO, is a high-viscosity residual fuel oil. HFO is the product remaining after the more valuable cuts of crude oil have been distilled. It is a particularly viscous, almost black oil.

Examples of biogenic fuels

Rapeseed oil

Cold-pressed rapeseed oil is extracted from various cultivars of rapeseed. Rapeseed oil is used as a raw material in the production of rapeseed methyl ester (RME) and is one of a group of oils known as fatty acid methyl esters (FAME).

Rapeseed oil has a viscosity of around 38 mm²/s at 40 °C. However, the range of tolerance is quite large and so a fuel specification is always required.

Soya oil

Cold-pressed soya oil is extracted from soya beans, which are a type of legume (pulse). The main value of soya beans lies in their high protein and oil content (about 39 and 17 % respectively), the latter of which is unusually high for beans.

Generally

Higher viscosity oils, for example crude oils, reprocessed waste oils, or vegetable oils such as rapeseed or soya bean oil, need to be analysed in advance. Due to the different qualities of the fuels, the burner execution has to be matched to the fuel.

WM-S10 with staged load control

Weishaupt's high-quality production is not limited to a small number of models. It offers a complete range, including some niche products.

The monarch® WM-S burners, designed for the combustion of special fuels, are the modern successors to Weishaupt's legendary medium and heavy-oil burners.

WM-S burners share the many positive features of the WM-L burners on which they are based, including:

- A compact, aerodynamic design.
- Low operational noise levels.
- Digital combustion management with precise dosing of fuel and air.

In addition, they have many other key features, most notably:

- A choice between underslung or sidemounted oil preheater.
- A compact valve block, reducing oil lines to just a supply and return.
- Insulated oil lines.
- A specially designed recirculating nozzle assembly with two or three nozzles.
- A mixing assembly optimised for the fuel to ensure the best combustion results.

WM-S10 burners, which have staged load control, are suitable for oil viscosities up to 75 mm²/s at 50 °C.

Oil preheater 3-stage nozzle assembly Solenoid valve block The oil-side components of a three-stage WM-S10 burner

Compact solenoid valve block

Solenoid valve block

A new, compact solenoid valve block was developed for the hydraulic control of the nozzle assembly, bringing all of the solenoid valves together within a single unit. A new direction was taken in the type of solenoid valves chosen: They are all two-way valves.

WM-(G)S20 and WM-(G)S30 with modulating load control

Control

The following methods of regulation are available for Weishaupt WM-S 20–30 burners:

Oil: Sliding-two-stage or modulating (R), depending on the method of load control employed.

The following methods of regulation are available for Weishaupt WM-GS 20–30 burners:

Gas: Sliding-two-stage or modulating (ZM), depending on the method of load control employed.

Oil: Sliding-two-stage or modulating (R), depending on the method of load control employed.

The output of a modulating burner is matched – within its operating range – to current heat demand.

These multiple control options make the burner suitable for a wide range of applications and ensure a gentle and problem-free start up, along with a high degree of operational reliability.

Preheating

The burner's electric preheater is able to heat high-viscosity oil very rapidly to precisely the required atomisation temperature. This is due to its large heat-exchanging surface in comparison to the relatively small volume of oil. This rapid distribuition of heat prevents any localised overheating that would lead to the 'cracking' of the oil.

Other components, such as the solenoid valve block and the nozzle assembly, are compactly constructed and kept at standby temperature by a low-power heating cartridge.

The oil lines are thermally insulated to keep heat losses between the preheater and the nozzles to a minimum. If the setting point of the oil is close to or below the ambient temperature then the oil lines will need to be traced.

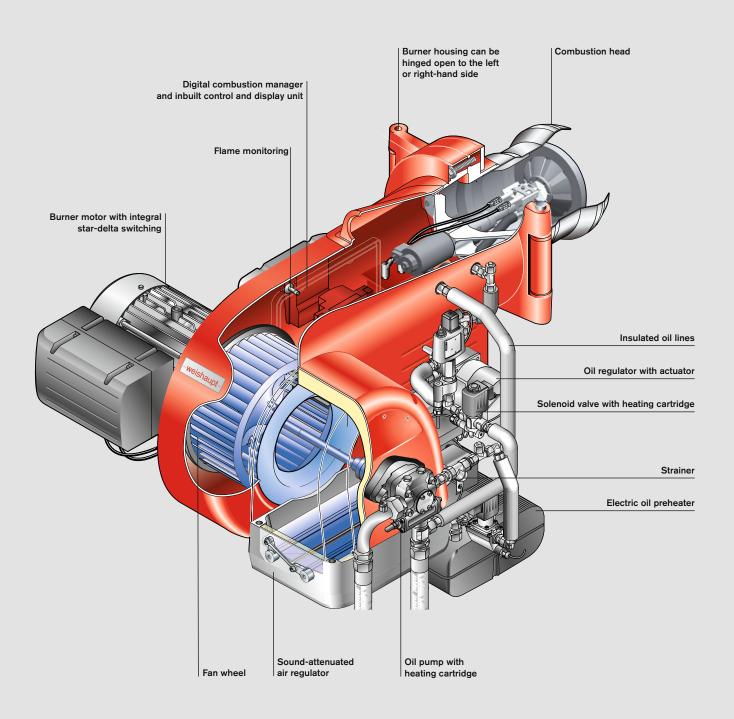
Recirculation

The recirculation of heated oil all the way up to the nozzle ensures that oil at the ideal atomisation temperature is available immediately at the time of fuel release / ignition.

Electrical connection

Local regulations and fusing requirements must be observed when connecting gas, oil, and dual-fuel burners to the electrical power supply.

Some of a WM-(G)S burner's electrical components are not mounted on the burner itself. Consequently, these and any other project-related components have to be accommodated by others.

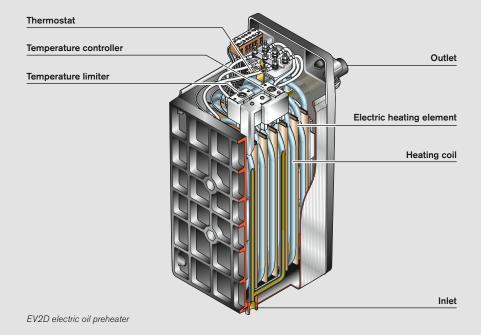

Weishaupt can offer wall-mounted or free-standing control panels for all electrical components. Alternatively, preassembled and tested switchgear can be supplied for integration with existing control panels.

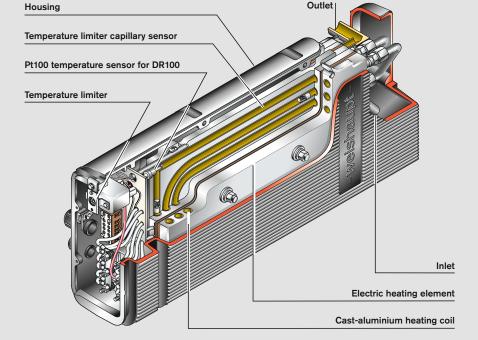
The most important advantages:

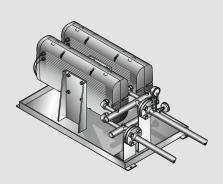
- Burner-mounted oil preheater
- Insulated oil lines
- Recirculating nozzle assembly
- Easy changeover between gas and oil on dual-fuel burners
- Digital combustion management with electronic compound regulation at all ratings
- Compact design
- Sound-attenuated air inlet as standard for guieter operation
- Powerful fan with specially developed fan geometry and air damper control
- Electromagnetic clutch included as standard (WM-GS)
- Easy access to all components, such as the mixing assembly, air damper and combustion manager
- Reliable operation with sliding-twostage or modulating operation, depending on the burner version and method of load control
- Computer-controlled function test of each individual burner at the factory
- Burners can be supplied with prewired plug connections
- Excellent price / capacity relationship
- Well-established, global service network

Trademark protection

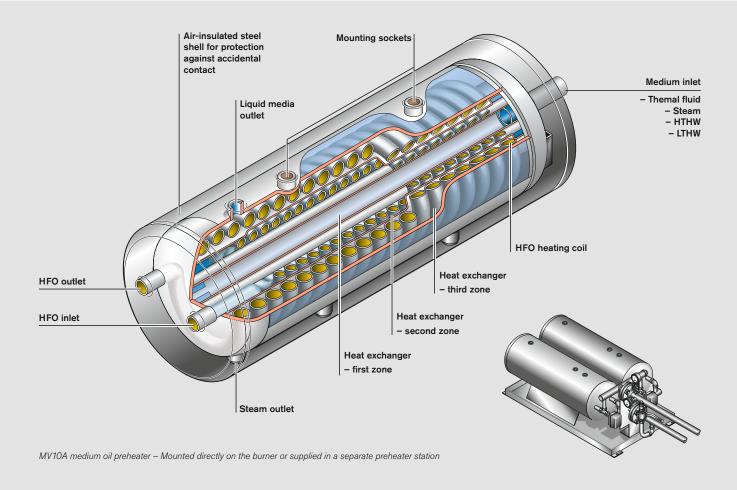
Weishaupt WM-series burners are registered as a Community Trade Mark throughout Europe.




Oil preheater


Viscosity is one of the key criteria for the combustion of liquid fuels.

A viscosity of no more than 10 mm²/s is appropriate for optimal atomisation. Low-viscosity fuels generally fulfil this criterion at a temperature of 20 °C. Medium and high-viscosity fuels, however, do not. Some thermal input is needed to ensure the optimal combustion of these fuels.


Weishaupt's electric preheaters are one way of bringing the oil up to a higher temperature, thereby bringing its viscosity to a suitable point. Weishaupt's electric oil preheaters offer the benefits of even heat transfer, ideal temperature sensor positioning, low pressure losses, and a compact design.

WEV2 electric oil preheater

Medium preheaters are another way of bringing medium and high-viscosity fuels up to atomisation temperature. They can operate alone to preheat the oil or provide support to an electric preheater. The combined variant has the advantage that the system can be cold-started even with a single-fuel burner. If a medium preheater were to be used on its own, then an additional fuel (e.g. gas) would be needed to bring the system up to operating temperature.

Weishaupt's MV-type medium preheaters are suitable for various media, namely LTHW, HTHW, thermal fluid, and steam.

They operate on a three-pass basis, transferring heat to a double heat exchanger coil. Medium-specific and/or thermostatic controllers are used to maintain temperature by determining the flow rate of the medium.

The medium preheater is a complete assembly, with the safety and control thermostats needed for control of the burner integrated into its connection unit.

Preheating temperatures above 100 °C

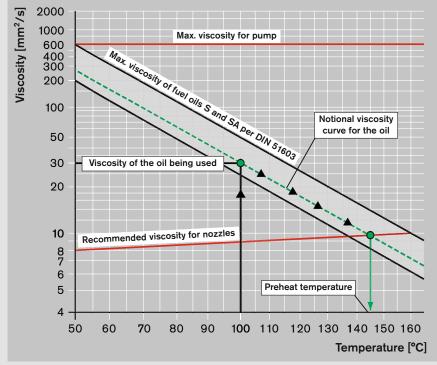
Temperatures in excess of 100 °C are always needed when preheating HFO in order to reach the viscosity recommended for the oil nozzles.

That places many more demands on the oil supply system than a low-viscosity oil would, especially in regard to transfer.

HFO is permitted to contain a very small amount of water. Unpressurised, this water vaporises at temperatures above 100 °C. This causes pressure fluctuations which can have a detrimental effect on the operational reliability of the burner.

Weishaupt's wide range of accessories includes oil supply components that meet these temperature and pressure demands, in extreme cases even for preheating temperatures of 160 °C with a ring main pressure of at least 5 bar.

Given the above, maximum operational reliability and safety for the burner can only be achieved if the correct oil-side components are also supplied. Weishaupt, who offer a one-stop solution with competent advice and all the necessary equipment, are best-placed to meet this goal.


Twin-pump assembly

Oil circulation unit with oil meter

Air/gas separator

Viscosity/temperature chart

Fuels

Natural gas **LPG**

MFO/HFO (max. 50 mm²/s at 100 °C)

The suitability of fuels of differing quality must be confirmed in advance with Weishaupt.

Applications

Weishaupt WM-(G)S burners are suitable for intermittent firing and continuous firing on:

- EN 303-compliant heat generators
- LTHW boilers
- HTHW boilers
- Steam boilers
- Air heaters
- Certain process applications

Permissible ambient conditions

- Ambient temperature
- -15 to + 40 °C for gas firing
- $-10 \text{ to} + 40 ^{\circ}\text{C}$ for oil firing
- Maximum 80 % relative humidity, no condensation
- The combustion air must be free of aggressive substances (halogens, chlorides, fluorides etc.) and impurities (dust, debris, vapours, etc.)
- Adequate ventilation is required for operation in enclosed spaces
- For plant in unheated areas, certain further measures may be required

Use of the burner for other applications or in ambient conditions not detailed above is not permitted without the prior written agreement of Max Weishaupt GmbH. Service intervals will be reduced in accordance with the more extreme operational conditions.

Installation and use

Local regulations and all applicable standards must be observed when installing and using the equipment.

Max. viscosity - WM-S10

WM-S10 burners with staged load control are suitable for oil viscosities up to 75 mm 2 /s at 50 °C.

Max. viscosity - WM-(G)S20/30

WM-(G)S20-30 burners with modulating load control are suitable for oil viscosities up to 50 mm²/s at 100 °C.

The combustion of HFO with a viscosity in excess of 50 mm²/s at 100 °C must be confirmed in advance with Weishaupt.

In order to maintain the highest degree of operational reliability, WM-(G)S20-30 burners should not be equipped with nozzles smaller than W100kg S7 50° or W100kg S4 50°.

Standards compliance

The burners are tested by an independent body and fulfil the applicable requirements of the following European Union directives and applied standards:

EMC EMC Directive 2014/30/EU

Applied standards:

- EN 61000-6-1:2007
- EN 61000-6-2:2005
- EN 61000-6-4: 2007

Low Voltage Directive LVD 2014/35/EU

- Applied standards:
- EN 60335-1:2010
- EN 60335-2-102:2010

MD Machinery Directive 2006/42/EC Applied standards:

- EN 267 Annex J,

• EN 676 Annex J, **GAD** Gas Appliance Directive 2009/142/EC

Applied standards:

• EN 676:2008

PED¹⁾ Pressure Equipment Directive 2014/68/EU

Applied standards:

- EN 267 Annex K,
- EN 676 Annex K,
- Conformity assessment procedure: Module B

The burners are labelled with

- CE Mark
- CE-PIN per 2009/142/EC
- DIN-CERTCO
- Identification No. of the notified body

¹⁾ With the appropriate choice of equipment.

Digital combustion management: Precise, simple, and reliable

Digital combustion management means optimal combustion figures, continuously reproducible setpoints, and ease of use.

Weishaupt WM-(G)S burners are equipped as standard with electronic compound regulation and digital combustion management. The latest combustion technologies demand a precise and continually reproducible dosing of fuel and combustion air. This optimises combustion efficiency and saves fuel.

Simple operation

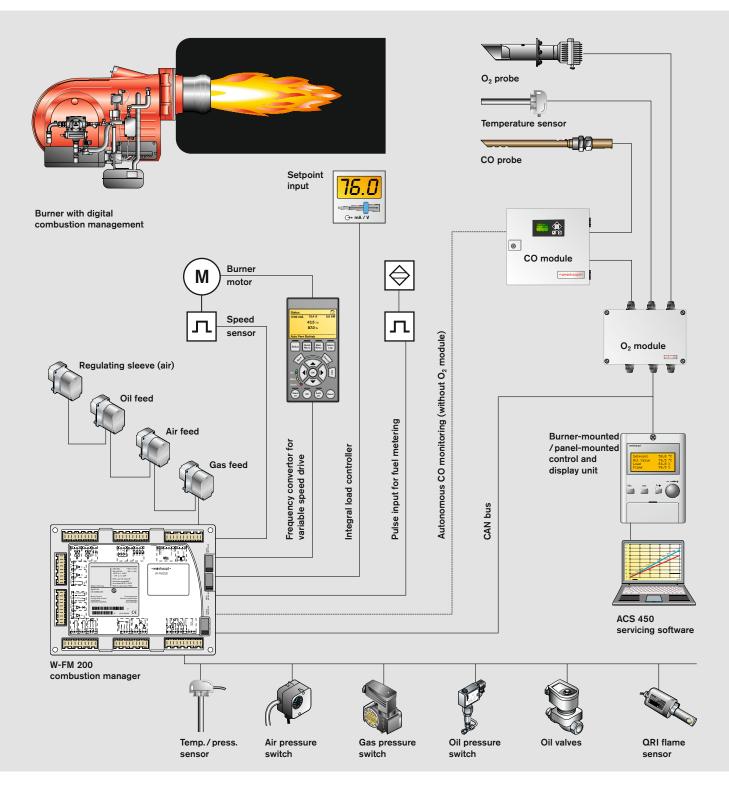
Setting and control of the burner is achieved using a control and display unit. This is linked to the combustion manager via a bus system, enabling the user-friendly setting of the burner. The control and display unit has, depending on the

type of combustion manager employed, either a language-neutral display or a clear text display with a choice of languages. An English / Chinese dual-screen version is available as an option with the latter should a Chinese-character display be desired.

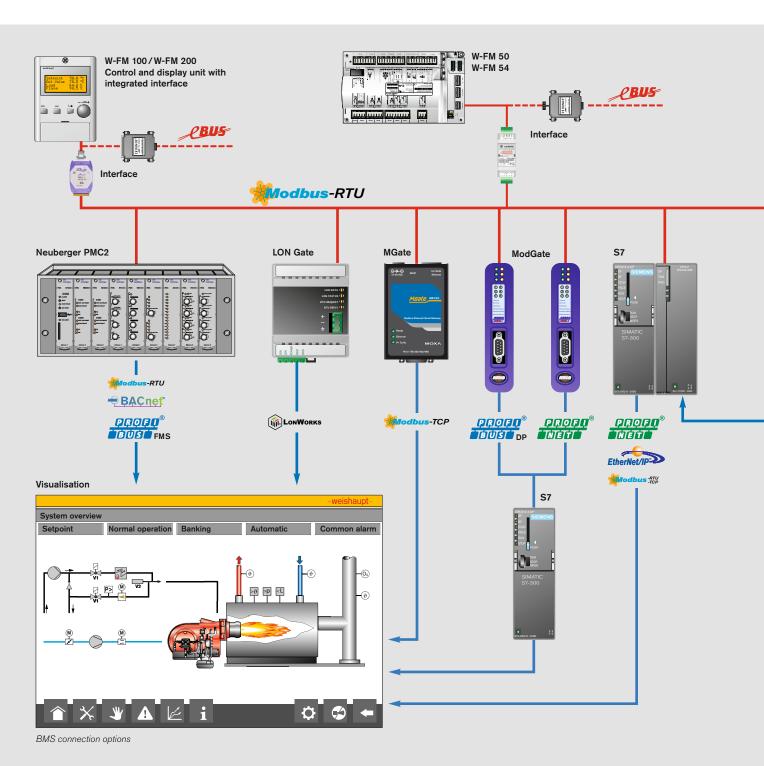
Measures for saving energy and increasing safety and reliability

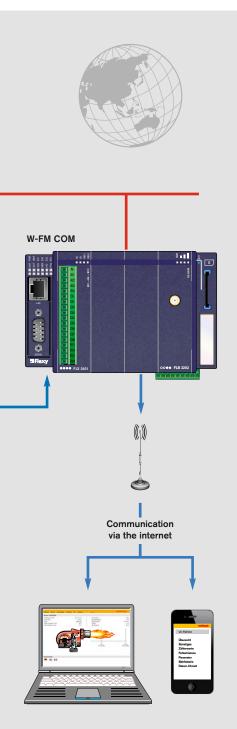
Variable speed drive reduces electrical consumption and facilitates a soft start of the combustion air fan. The use of VSD also reduces noise emissions by a considerable amount.

O₂ trim saves fuel through a continual and extremely efficient optimisation of the combustion air. Control is effected by a


system with a Lambda probe, which continually measures the oxygen content of the flue gas.

CO monitoring executes a safety shutdown of the burner if a predefined CO limit is exceeded, thereby ensuring the very highest degree of safety.


Combined CO/O_2 control ensures an ultimate degree of safety. CO emissions are continually monitored and, if the defined limit is exceeded, the burner is operated with an increased amount of excess air for a short period of time before the O $_2$ trim returns the burner to its preset O $_2$ setpoint. Should external influences prevent a non-critical condition from being reached, then the burner will undergo a controlled shutdown.


Features – digital combustion management	W-FM50	W-FM100	W-FM200
Single-fuel operation	•	•	•
Dual-fuel operation	-	•	•
Intermittent firing	•	•	•
Continuous firing >24 h	● 1)	•	•
Variable speed drive available	•	-	•
O ₂ trim available	-	-	•
CO monitoring	-	-	0
Combined O ₂ /CO control	-	-	0
Flame sensor for intermittent firing	QRA2/QRB	QRB	QRB
Flame sensor for continuous firing	ION 1)	ION/QRI/QRA 73	ION/QRI/QRA 73
Maximum number of actuators	2	4	6
Gas valve proving	•	•	•
Integrated PID controller with automatic adaption. Pt / Ni temperature sensor, 0/2-10 V, and 0/4-20 mA inputs for temperature / pressure	-	0	•
Setpoint input (temperature / pressure)	-	0	•
Analogue signal input (0/2-10 V and 0/4-20 mA	-/●	0	•
Configurable 0/4-20 mA analogue output	-	0	•
Language-neutral ABE control unit	•	-	-
ABE control unit with 20 available languages (any one ABE limited to 6)	-	•	•
Dual-language/script ABE control unit (Chinese/English)	-	0	0
Removable ABE control unit (max. length of connecting line)	20 m	100 m	100 m
Fuel consumption meter (switchable)	● ²⁾	-	•
Combustion efficiency display in conjunction with O_2 trim	-	-	•
eBUS/Modbus RTU interface	•	•	•
PC-supported commissioning	•	•	•

[•] Standard O Optional 1) Gas burner with ionisation probes only 2) Not in conjunction with VSD

Flexible communications: Compatible with building management systems

Remote monitoring made easy via tablet or laptop

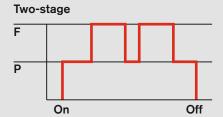
The digital combustion manager is the basis of communications with other superordinate systems. This is generally achieved using the eBus or Modbus protocols.

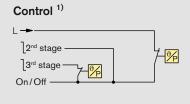
All the usual burner and boiler functions can be monitored and controlled through a direct connection with a building management system.

A graphical HMI is available as an option to provide a user-friendly overview of the boiler. The touchscreen display allows numerous functions to be adjusted and monitored, such as system parameters and setpoints of individual and multi-boiler plant and ancillary equipment.

The controls specialists, Neuberger, who are a part of the Weishaupt Group, are able to design and implement complex control solutions.

Further optional components enable connections to be made to systems using commonplace industrial standards, such as Profibus-DP, LON-Bus, and Modbus RTU, and network protocols such as Profinet I/O, Modbus TCP, BacNet, etc.

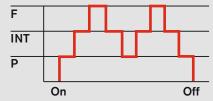

A recent addition to Weishaupt's portfolio is the W-FM COM communications module. It transmits data securely over the internet so that it can be called up and displayed in a browser window on a computer, tablet, or smartphone, facilitating accurate service planning for example. Even away from the internet you can be kept up to date with the operation of the burner: In the event of a safety shutdown or other predefined trigger, an SMS text message is sent automatically.

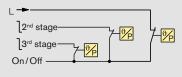

Overview of burner control Model designation

Gas and oil-fired operation

Two-stage control (Z)

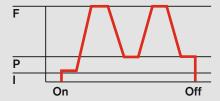
 Two-term switching (e.g. temperature or pressure stat) causes actuators to drive the burner to partial load or full load in response to heat demand. Single-stage control with low-impact start can also be effected.

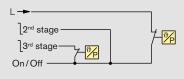




Three-stage control(T)

 Two-term switching (e.g. temperature or pressure stat) for each load point causes actuators to drive the burner to partial load, intermediate load, or full load in response to heat demand. Twostage control with low-impact start or changeover can also be effected.

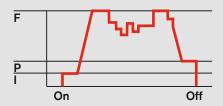


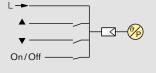


Sliding-two-stage control (ZM, R)

• Two-term switching (e.g. temperature or pressure stat) causes actuators to drive the burner to partial load or full load in response to heat demand. There is a gradual change between both load points. There are no sudden, large changes in fuel throughput.

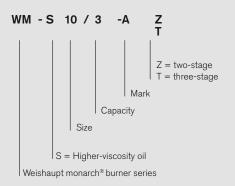
Sliding-two-stage

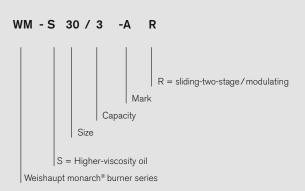


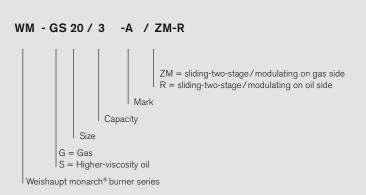

Modulating control (ZM, R)

- An electronic load controller causes actuators to make infinitely variable load adjustments in response to heat demand.
- Available modulation control options:
 W-FM 100 with load controller
- W-FM 200
- Alternatively, a PID controller can be fitted into the switching

Modulating

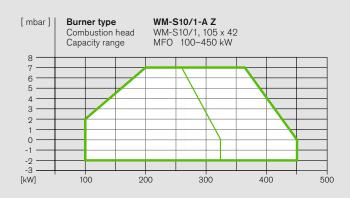

F = Full load (nominal load)
INT = Intermediate load
P = Partial load (minimum load)
I = Ignition load

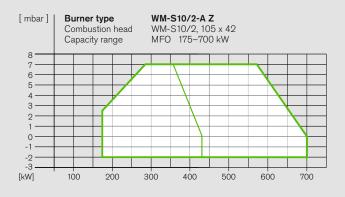



¹⁾ Alternatively, staged control can also be effected by an electronic PID controller. In which case appropriate temperature sensors or pressure transducers will be required.

Burner		Gas		
version	two-stage	three-stage	sliding-two-stage / modulating	sliding-two-stage / modulating
Z	•			
T		•		
R			•	
ZM-R			•	•

Model designation







Burner selection WM-S10, versions Z and T

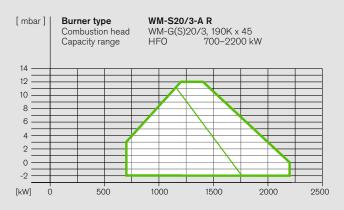
MFO: Capacity with combustion head

Closed Open

Turndown:

MFO max. 3:1

Capacity graphs for oil burners certified in accordance with EN 267.


Stated ratings are based on an air temperature of 20 $^{\circ}$ C and an installation altitude of 500 m above sea level. For installations at higher altitudes, a reduction in capacity of 1 % per 100 m above sea level should be taken into account.

DIN CERTCO certification:

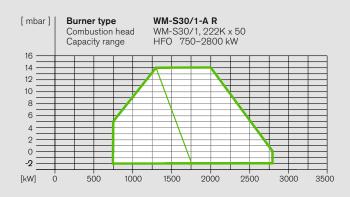
The burners have been type-tested by an independent body (TÜV-Süd) and certified by DIN CERTCO.

Burner selection WM-S20, version R

The execution of the WM-S20 burner parallels that of the WM-GS20, save that an electromagnetic clutch, air pressure switch, double gas valve assembly, gas butterfly valve, and gas butterfly valve actuator are not included. The gas mixing chamber is closed off with a blanking flange.

HFO: Capacity with combustion head

Closed Open


Turndown:

HFO max. 3:1

Capacity graphs for oil burners certified in accordance with EN 267.

Stated ratings are based on an air temperature of 20 $^{\circ}$ C and an installation altitude of 500 m above sea level. For installations at higher altitudes, a reduction in capacity of 1 $^{\%}$ per 100 m above sea level should be taken into account.

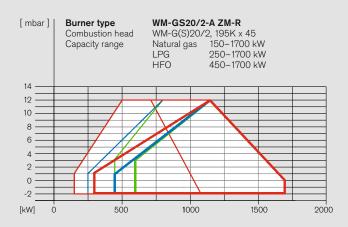
Burner selection WM-S30, version R

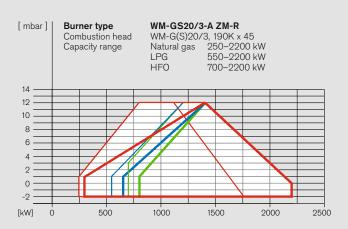
HFO: Capacity with combustion head

Closed Open

Turndown:

max. 3:1


Capacity graphs for oil burners certified in accordance with EN 267.


Stated ratings are based on an air temperature of 20 °C and an installation altitude of 500 m above sea level. For installations at higher altitudes, a reduction in capacity of 1 % per 100 m above sea level should be taken into account.

DIN CERTCO certification:

The burners have been type-tested by an independent body (TÜV-Süd) and certified by DIN CERTCO.

Burner selection WM-GS20, version ZM-R

Nat. gas: Capacity with comb. head Closed

LPG: Capacity with comb. head Closed Open

HFO: Capacity with comb. head Closed Open

Turndown:

Open

max. 7:1 Gas HFO max. 3:1

Capacity graphs for gas and dual-fuel burners certified in accordance with EN 676 and EN 267.

Stated ratings are based on an air temperature of 20 °C and an installation at sea level. For installations at higher altitudes, a reduction in capacity of 1 % per 100 m above sea level should be taken into account.

Gas valve train sizing WM-GS20, version ZM-R

WM-G	S20/	/2-A	, vei	sior	ı ZN	I-R								
Burner rating kW	(FR Flow Nor 1"	nina l 1½ " ninal	julato ssure I valv 2"	ir) into e tra 65 outtei	shute iin di 80 fly di	off va ame 100 amet 65	ter 125 er	(HĒ Flov Nor 1"	regu v pre nina l 1½ " ninal	ssure ssure l valv 2" gas b	into e tra 65	shute i in di 80	ame 100 amet	ter 125
Natura 720 900 1100 1300 1500 1700	59 90 133 183 240	E L 24 36 52 69 89 111	HV = 11 17 23 29 35 43	10.3 - 12 16 19 22 25	35 kV 10 13 15 17	Vh/m 9 12 13 14 15	13; d = 9 11 12 13 14	= 0.60 17 27 39 53 68 85	6 12 20 29 38 48 60	6 9 13 16 19 22	7 10 12 13 15	- 6 9 10 11 12	- 6 8 9 10	- 6 8 9 10
Natura 720 900 1100 1300 1500 1700	83 129 190 262	33 49 72 97 126 159	HV = 15 21 30 38 48 59	= 8.8 10 14 19 24 28 33	3 kW - 12 15 18 21 23	h/m ³ 10 13 15 16 18	10 12 14 15 16	0.641 24 37 55 74 96 121	17 27 39 53 68 85	7 12 17 21 25 30	5 9 12 14 17	- 8 11 12 14 16	- 7 10 11 12 13	- 7 9 11 12 13
LPG* 720 900 1100 1300 1500 1700	LHV = 27 41 59 80 103 130	25.8 12 18 26 33 41 50	39 kV - 10 14 17 19 22	Vh/m - 8 11 12 14 15	13; d - 10 11 11 12	= 1.5 - 9 10 10	555 - 9 10 10	8 13 19 25 31 38	6 10 15 19 23 28	- 6 9 10 11 12	- 5 7 8 9	- 7 7 8 8	- 7 7 7 8	- 6 7 7

The LHV is referenced to 0 °C and 1013 mbar.

All pressures in mbar.

WM-G	S20/3-A	, versi	n ZN	/I-R								
Burner rating kW	(FRS reg Flow pre Nomina 1" 11/2' Nominal	ssure su gulator) sssure in I valve t 2" 69 gas butt 65 69	o shut rain d 5 80 erfly d	iame 100	ter 125	(HF Flox Nor 1"	regu v pre nina l 1½ " ninal	ılator ssure I valv 2"	into e tra 65	shute i in di 80	off va ame 100 amet 65	ter 125
Natural 1125 1300 1500 1700 1900 2200	gas E L 135 50 180 66 239 87 - 111 - 137 - 181	HV = 10 20 13 26 10 34 20 42 29 51 29 65 30	3 10 5 12 0 15 5 18 9 21	Wh/m - 10 12 14 16 19	13; d = 9 11 13 15 17	= 0.60 37 50 66 84 104 137	6 26 35 47 59 73 96	10 13 18 22 27 33	7 9 12 14 17 20	6 7 10 12 14 16	- 7 9 11 12 14	- 6 8 10 11 13
Natural 1125 1300 1500 1700 1900 2200	gas LL 1 195 71 260 94 - 124 - 159 - 196 - 259	HV = 8 28 1' 36 2 47 2' 58 33 71 39 91 49	7 12 1 15 7 19 3 23 9 27	/h/m ³ 10 12 15 18 20 23	3; d = 9 11 14 16 18 21	54 71 95 121	38 50 66 84 104 137	14 18 24 30 36 46	9 12 15 19 22 27	7 10 13 16 18 21	6 8 11 13 15 17	6 8 10 13 14 16
LPG* 1 1125 1300 1500 1700 1900 2200	HV = 25. 59 24 77 31 102 40 130 50 161 61 212 79	89 kWh/ 11 - 14 10 18 15 22 15 26 1' 32 20	8 2 10 5 12 7 13	= 1.5 - 9 11 12 13	555 - 9 10 11 12	17 22 30 38 46 60	12 16 22 27 33 43	6 7 10 12 14 17	- 6 7 9 10 12	- 5 7 8 9	- 6 7 8 9	- 6 7 8 9

Screwed		Flanged	
R 1	W-MF512	DN 65	DMV5065/12
R 1½	W-MF512	DN 80	DMV5080/12
R 2	DMV525/12	DN100	DMV5100/12
		DN 195	VGD 40 195

Stated flow pressures are based on a combustion chamber resistance of 0 mbar. The combustion chamber pressure of the heat generator must be added to the figure determined from the above chart when sizing the gas valve train. Minimum flow pressure 15 mbar.

For low-pressure supplies, EN 88-compliant governors with safety diaphragms are used.

For high-pressure supplies, an EN 334-compliant high-pressure regulator should be selected from the following technical booklets:

- Regulators up to 4 bar, Print No. 83001202
- Regulators with safety devices, Print No. 83197902

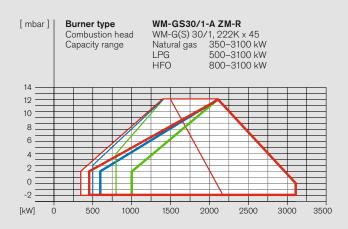
Refer to the burner's rating plate for the maximum connection pressure.

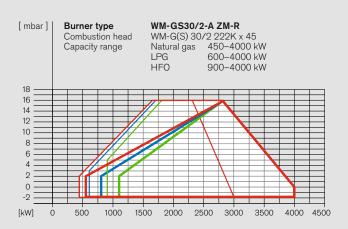
Maximum Operating Pressure (MOP)

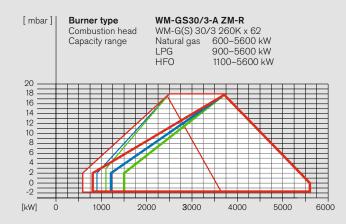
The gas supplier must safeguard the gas supply such that the flow pressure will not exceed the MOP of the gas valve train components.

Valve train design

a) Low pressure:


Normally, low-pressure valve trains are used for gas flow pressures up to a maximum of 300 mbar and an MOP of 500 mbar. This allows for pressure losses between the transfer station and the valve train. Furthermore, it is assumed that the transfer station utilises components (SSV, SRV, regulator) that are not of the highest class of accuracy. In individual cases, following consideration and approval by Weishaupt's headquarters, a gas flow pressure of up to 360 mbar can be approved if the appropriate conditions exist.


b) High pressure:


Normally, high-pressure valve trains are used for gas flow pressures above 300 mbar.

^{*} The LPG charts are based on propane, but may also be used for butane.

Burner selection WM-GS30, version ZM-R

Nat. gas: Capacity with comb. head
Closed
Open

LPG: Capacity with comb. head Closed Open HFO: Capacity with comb. head Closed Open

Turndown:

Gas max. 7:1 HFO max. 3:1

Capacity graphs for gas and dual-fuel burners certified in accordance with EN 676 and EN 267.

Stated ratings are based on an air temperature of 20 $^{\circ}$ C and an installation at sea level. For installations at higher altitudes, a reduction in capacity of 1 $^{\circ}$ 0 per 100 m above sea level should be taken into account.

Gas valve train sizing WM-GS30, version ZM-R

WM-G	S30/1-A, vers	ion ZM-R	
Burner rating kW	Nominal gas bu	nto shutoff valve train diameter 55 80 100 125	High-pressure supply (HP regulator) Flow pressure into shutoff valve Nominal valve train diameter 1" 1½" 2" 65 80 100 12! Nominal gas butterfly diameter 80 80 80 80 80 80 80 80
Natura 1400 1600 1800 2000 2250 2500 2800 3100	209 78 31 1 272 100 39 2 - 125 48 2 - 153 58 3 - 191 70 2 - 233 84 4 - 290 103 5	0.35 kWh/m³; d = 9 14 12 11 124 18 14 13 18 14 13 18 4 24 19 18 10 28 22 19 17 32 24 22 16 37 27 24 15 43 31 27	= 0.606 59
Natura 1400 1600 1800 2000 2250 2500 2800 3100	- 109 41 2 - 141 53 3 - 177 65 3 - 217 79 4 97 5 117 6 144 7	3.83 kWh/m³; d = 24 17 14 13 30 21 17 15 37 26 20 18 34 30 23 20 33 35 26 23 35 41 29 26 55 48 34 29 39 56 38 33	0.641 83 58 21 14 11 10 5 107 75 27 17 14 12 15 135 94 34 21 17 15 - 116 41 25 20 17 16 49 30 24 20 15 59 35 27 22 2 71 41 32 25 24 85 48 36 29 25
LPG* 1400 1600 1800 2000 2250 2500 2800 3100	116 46 21 1 146 57 25 1 179 69 30 2 225 85 36 2 276 103 42 2 -127 50 3	/m³; d = 1.555 2 10 9 9 4 12 11 10 7 14 12 12 20 16 14 13 23 18 16 15 27 21 17 16 31 23 19 18 36 26 21 20	27 20 9 7 7 6 6 35 25 12 9 8 8 8 8 43 32 15 11 10 9 9 53 38 17 13 12 11 65 47 21 15 13 12 12 79 57 24 17 15 14 13 97 70 28 20 17 15 18 118 84 33 22 19 17 16

The LHV is referenced to 0 °C and 1013 mbar.

All pressures in mbar.

^{*} The LPG charts are based on propane, but may also be used for butane.

Screwed		Flanged	
R 1	W-MF512	DN 65	DMV5065/12
R 1½	W-MF512	DN 80	DMV5080/12
R 2	DMV525/12	DN100	DMV5100/12
		DN 125	VGD 40.125

Stated flow pressures are based on a combustion chamber resistance of 0 mbar. The combustion chamber pressure of the heat generator must be added to the figure determined from the above chart when sizing the gas valve train. Minimum flow pressure 15 mbar.

For low-pressure supplies, EN 88-compliant governors with safety diaphragms are used.

For high-pressure supplies, an EN 334-compliant high-pressure regulator should be selected from the following technical booklets:

- Regulators up to 4 bar, Print No. 83001202
- Regulators with safety devices, Print No. 83197902

Refer to the burner's rating plate for the maximum connection pressure.

WM-G	S30/2-A, version ZM-R	
Burner rating kW	Low-pressure supply (FRS regulator) Flow pressure into shutoff valve Nominal valve train diameter 1" 1½" 2" 65 80 100 125 Nominal gas butterfly diameter 80 80 80 80 80 80 80 80	High-pressure supply (HP regulator) Flow pressure into shutoff valve Nominal valve train diameter 1" 11½" 2" 65 80 100 125 Nominal gas butterfly diameter 80 80 80 80 80 80 80 80
Natural 2100 2300 2500 2800 3100 3400 3700 4000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 0.606 127 88 31 20 16 14 13 - 105 37 23 19 16 15 - 124 43 26 21 18 17 53 32 25 21 20 63 38 30 24 23 73 42 33 27 25 84 48 37 29 27 97 54 41 32 30
Natural 2100 2300 2500 2800 3100 3400 3700 4000	gas LL LHV = 8.83 kWh/m³; d = - 238 85 46 31 23 20 - 101 54 36 26 23 - 117 62 41 29 26 - 145 76 49 35 30 - 175 90 58 40 34 - 207 105 66 45 38 - 242 122 75 50 42 - 280 140 85 56 46	= 0.641
LPG* L 2100 2300 2500 2800 3100 3400 3700 4000	LHV = 25.89 kWh/m³; d = 1.555 195 74 31 20 15 13 12 233 87 36 23 17 15 14 274 102 41 26 20 16 15 - 126 50 30 23 19 17 - 153 59 36 26 21 20 - 182 69 41 30 24 22 - 214 80 46 33 26 24 - 248 92 52 36 28 25	56 40 17 12 11 10 9 67 48 20 14 12 11 11 78 56 23 16 14 12 12 97 69 28 19 16 15 14 118 84 33 22 19 17 16 140 99 38 25 21 19 18 -116 43 28 24 20 20 -133 49 31 26 22 21

Maximum Operating Pressure (MOP)

The gas supplier must safeguard the gas supply such that the flow pressure will not exceed the MOP of the gas valve train components.

Valve train design

a) Low pressure:

Normally, low-pressure valve trains are used for gas flow pressures up to a maximum of 300 mbar and an MOP of 500 mbar. This allows for pressure losses between the transfer station and the valve train. Furthermore, it is assumed that the transfer station utilises components (SSV, SRV, regulator) that are not of the highest class of accuracy. In individual cases, following consideration and approval by Weishaupt's headquarters, a gas flow pressure of up to 360 mbar can be approved if the appropriate conditions exist.

b) High pressure:

Normally, high-pressure valve trains are used for gas flow pressures above 300 mbar.

Gas valve train sizing WM-GS30, version ZM-R

WM-G	S30/3-A	, versi	n ZI	/I-R								
Burner rating kW	Nomina 1½" 2"	gulator) ssure int I valve t	o shut rain d 100 erfly d	iame 125	ter 150	(HĚ Flov Nor 1½'	regu v pre nina ' 2"	l valv 65	into e into e tra 80	ply shute in di 100 rfly di 80	ame 125	ter 150
Natura 2500 2900 3300 3700 4100 4500 5000 5600	227 78 - 104 - 133 - 165 - 200 - 238 - 290		18 22 27 33 33 37 42 48	Wh/m 15 19 23 27 31 34 38 43	14 17 21 25 28 30 33 37	118 158 - - - -	6 37 49 63 78 94 111 133 164	20 27 34 42 49 57 67 80	15 20 25 31 36 40 47 55	12 16 19 23 26 29 33 37	11 14 18 21 24 26 29 33	11 14 17 21 23 25 28 31
Natura 2500 2900 3300 3700 4100 4500 5000 5600		54 33 72 43 92 55 114 67	3 22 3 28 5 35 42 9 48 2 55 9 63	/h/m ³ 18 23 28 34 38 43 48 56	3; d = 16 21 25 30 34 37 42 47	168	51 68 88 109 131 155 188	27 36 46 56 66 77 92	19 26 33 40 47 53 62 74	14 19 24 29 33 37 42 48	13 17 22 26 29 33 37 42	13 17 21 25 28 31 35 39
LPG* 2500 2900 3300 3700 4100 4500 5000 5600	LHV = 25.0 97 36 129 47 166 60 208 74 253 89 - 105 - 127 - 156	89 kWh/ 20 14 26 18 33 22 40 25 48 3 55 38 65 4	11 3 14 2 17 7 20 23 5 25 28	= 1.5 10 12 15 17 20 21 24 26	555 9 12 14 16 19 20 22 24	51 68 88 109 133 159 194 -	17 23 30 37 44 51 61 74	11 14 18 22 26 29 34 40	9 11 14 17 20 23 26 30	7 9 12 14 17 18 20 22	7 9 11 13 16 17 18 21	7 9 11 13 15 16 18 20

The LHV is referenced to 0 °C and 1013 mbar.

All pressures in mbar.

Screwed		Flanged	
R 1	W-MF512	DN 65	DMV5065/12
R 1½	W-MF512	DN 80	DMV5080/12
R2	DMV525/12	DN100	DMV5100/12
		DN 125	VGD 40.125
		DN 150	VGD40.150

Stated flow pressures are based on a combustion chamber resistance of 0 mbar. The combustion chamber pressure of the heat generator must be added to the figure determined from the above chart when sizing the gas valve train. Minimum flow pressure 15 mbar.

For low-pressure supplies, EN 88-compliant governors with safety diaphragms are used

For high-pressure supplies, an EN 334-compliant high-pressure regulator should be selected from the following technical booklets: $\frac{1}{2} \frac{1}{2} \frac{$

- Regulators up to 4 bar, Print No. 83001202
- Regulators with safety devices, Print No. 83197902

Refer to the burner's rating plate for the maximum connection pressure.

Maximum Operating Pressure (MOP)

The gas supplier must safeguard the gas supply such that the flow pressure will not exceed the MOP of the gas valve train components.

Valve train design

a) Low pressure:

Normally, low-pressure valve trains are used for gas flow pressures up to a maximum of 300 mbar and an MOP of 500 mbar. This allows for pressure losses between the transfer station and the valve train. Furthermore, it is assumed that the transfer station utilises components (SSV, SRV, regulator) that are not of the highest class of accuracy. In individual cases, following consideration and approval by Weishaupt's headquarters, a gas flow pressure of up to 360 mbar can be approved if the appropriate conditions exist.

b) High pressure:

Normally, high-pressure valve trains are used for gas flow pressures above $300\ \mathrm{mbar}.$

^{*} The LPG charts are based on propane, but may also be used for butane.

Scope of delivery and order numbers

Description	WM-S10	WM-S20	WM-S30	WM-GS20	WM-GS30
Burner housing, hinged flange, housing cover, Weishaupt burner motor, air inlet housing, fan wheel, combustion head, ignition unit, ignition cable, ignition electrodes, combustion manager with control unit, flame sensor, actuators, flange gasket, limit switch on hinged flange, fixing screw	•	•	•	•	•
Digital combustion manager W-FM 50 W-FM 100 W-FM 200	• 0 0	- • •	0 0	- • •	- • •
Valve proving via the combustion manager	-	-	-	•	•
Class-A double gas valve assembly	-	-	-	•	•
Gas butterfly valve	-	-	-	•	•
Air pressure switch	0	0	0	•	•
Low gas pressure switch	-	-	-	•	•
Preset, capacity-based mixing assembly	•	•	•	•	•
Actuators for compound regulation of fuel and air via W-FM: Air damper actuator Gas butterfly valve actuator Oil regulator actuator	• - -	• -	• - •	•	•
Oil pressure switch in return	-	•	•	•	•
Oil pump fitted to burner	•	•	•	•	•
Electromagnetic clutch	0	0	0	•	•
Oil hoses	•	•	•	•	•
Compact solenoid valve block with multi-stage oil-circulating nozzle assembly with preinstalled oil nozzles	•	-	-	-	-
2 oil solenoid valves, oil regulator, nozzle head with solenoid valve, preinstalled regulating nozzle and safety shutoff device	-	•	•	•	•
Oil preheater type EV type WEV	• -	•	-	•	-
Insulated oil lines on burner	•	•	•	•	•
Star-delta combination, fitted to motor	-	-	•	-	•
DOL motor contactor fitted to motor	•	•	-	•	-

 ${\rm EN}$ 676 stipulates that ball valves, gas filters, and gas pressure regulators form part of the burner supply (see Weishaupt accessories list).

Please enquire or see the special equipment section of this brochure for further burner executions.

StandardO Optional

The execution of the WM-S20 burner parallels that of the WM-GS20, save that an electromagnetic clutch, air pressure switch, double gas valve assembly, gas butterfly valve, and gas butterfly valve actuator are not included. The gas mixing chamber is closed off with a blanking flange.

Oil burners, version Z

Burner type	Order No.
WM-S10/1-A Z	212 110 10
WM-S10/2-A Z	212 110 20

DIN CERTCO: 5G1053

Oil burners, version T

Burner type	Order No.
WM-S10/3-A T	212 110 30
WM-S10/4-A T	212 110 40

DIN CERTCO: 5G1053

Oil burners, version R

Burner type	Order No.
WM-S20/2-A R	Please enquire
WM-S20/3-A R	Please enquire
DIN CERTCO: -	
WM-S30/1-A R	212 320 10
WM-S30/2-A R	212 320 20
WM-S30/3-A R	212 320 30

DIN CERTCO: 5G1046

Dual-fuel burners, version ZM-R

type	tuito tiuiii sizo	0.00
WM-GS20/2-A ZM-R	R 1	218 252 11
	R 1½	218 252 12
	R 2	218 252 13
	DN 65	218 252 14
	DN 80	218 252 15
	DN 100	218 252 16
	DN 125	218 252 17
WM-GS20/3-A ZM-R	R 1	218 253 11
	R 1½	218 253 12
	R 2	218 253 13
	DN 65	218 253 14
	DN 80	218 253 15
	DN 100	218 253 16
	DN 125	218 253 17
DIN CERTCO: 5G 1032M CE-PIN: CE-0085 BT 0133		
WM-GS30/1-A ZM-R	R 1	218 351 11
	R 1½	218 351 12
	R 2	218 351 13
	DN 65	218 351 14
	DN 80	218 351 15
	DN 100	218 351 16
	DN 125	218 351 17
WM-GS30/2-A ZM-R	R 1	218 352 11
	R 1½	218 352 12
	R 2	218 352 13
	DN 65	218 352 14
	DN 80	218 352 15
	DN 100	218 352 16
	DN 125	218 352 17
WM-GS30/3-A ZM-R	R 1	218 353 11
	R 1½	218 353 12
	R 2	218 353 13
	DN 65	218 353 14
	DN 80	218 353 15
	DN 100	218 353 16

DN 125

Valve train size

Order No.

DIN CERTCO: 5G1044M **CE-PIN:** CE-0085 BU 0360

218 353 17

Special equipment WM-S10, versions Z and T

Versions Z (two-stage) and T (three-stage)	WM-S10/1-A Z	WM-S10/2-A Z	WM-S10/3-A T	WM-S10/4-A T
Combustion head extension by 100 mm		210 030 90	210 030 91	210 030 92	210 030 93
Side-mounted oil preheater		210 031 34	210 031 35	210 031 35	210 031 35
W-FM 100 (suitable for continuous firing) in lieu of W-FM 50 1)	burner-mounted supplied loose	210 031 50 210 032 64			
Integral load controller and analogue signal convertor for W-FM 100		110 017 18	110 017 18	110 017 18	110 017 18
W-FM 200 in lieu of W-FM 50, with integral lo controller, analogue signal convertor, and VSD module, with optional fuel metering		210 031 51 210 032 62			
LGW 50 air pressure switch 1)	3577	210 030 08	210 030 08	210 030 08	210 030 08
DSB158 minimum pressure switch in supply ¹)	Please enquire	Please enquire	Please enquire	Please enquire
QRI flame sensor in lieu of QRB 1)		210 030 24	210 030 24	210 031 24	210 031 24
Pressure gauge with ball valve		110 008 82	110 008 82	110 008 82	110 008 82
Vacuum gauge with ball valve		110 005 70	110 005 70	110 005 70	110 005 70
PON oil pump (hardened execution)		210 008 01	210 008 01	210 008 01	210 008 01
PON oil pump heating		210 032 37	210 032 37	210 032 37	210 032 37
Oil hoses, 1300 mm in lieu of 1000 mm		210 031 62	210 031 62	210 031 62	210 031 62
Heated, stainless-steel oil hoses, DN13 x 130	0 mm	210 032 38	210 032 38	210 032 38	210 032 38

 $^{^{\}rm 1)}$ Required for PED (2014/68/EU) compliance.

Special equipment WM-S20, version R

Version R (sliding-two-stage or modulating)		WM-S20/2-A	WM-S20/3-A
Combustion head extension	by 100 mm	Please enquire	Please enquire
	by 200 mm	Please enquire	Please enquire
	by 300 mm	Please enquire	Please enquire
W-FM 100 supplied loose in lieu of fitted		210 032 59	210 032 59
Integral load controller and analogue signal conv	ertor for W-FM 100	110 017 18	110 017 18
W-FM 200 in lieu of W-FM 100 with integral loa analogue signal convertor, and VSD module with metering			
S	burner-mounted	210 032 60	210 032 60
	supplied loose	210 032 61	210 032 61
VSD with integral frequency convertor (W-FM 20	00 required) ²⁾	210 030 40	210 030 40
VSD with separate frequency convertor (W-FM 2 (See accessories list for frequency convertor) ²⁾	200 required)	210 030 41	210 030 41
ABE with Chinese-character display, supplied loc	ose	110 018 53	110 018 53
SQM48/35 Nm oil regulator actuator		210 032 50	210 032 50
DSB158 pressure switch in supply 1)		210 032 52	210 032 52
Solenoid valve for air pressure switch test with c	ontinuous-run fan or post-purge	250 030 21	250 030 21
Air inlet with flange for ducted-air connection and LGW air pressure switch		210 030 47	210 030 47
Inverted air inlet, with flange for ducted-air conne	ection and LGW air pressure switch	Please enquire	Please enquire
Pressure gauge with ball valve on pump		110 002 82	110 002 82
Pressure gauge with ball valve in return		110 011 50	110 011 50
Vacuum gauge with ball valve		110 017 00	110 017 00
UHE oil pump (hardened execution)		Please enquire	Please enquire
Heated oil lines between pump and solenoid valv	ve	210 032 51	210 032 51
Oil hoses, 1300 mm in lieu of 1000 mm		Please enquire	Please enquire
Motor with star-delta combination and overload p	protection 3)	250 030 95	250 030 95

The execution of the WM-S20 burner parallels that of the WM-GS20, save that an electromagnetic clutch, air pressure switch, double gas valve assembly, gas butterfly valve, and gas butterfly valve actuator are not included. The gas mixing chamber is closed off with a blanking flange.

¹⁾ Required for PED (2014/68/EU) compliance.

 $^{^{2)}\,\}mathrm{VSD}$ with R version burners: General conditions for modulating load control when firing on oil:

⁻ Frequency: min. 35 Hz - Turndown: max. 3:1

 $^{^{\}rm 3)}$ The necessary motor protection can be provided either by a motor protection switch (supplied and fitted into a panel by others), or with integral motor overload protection (see special equipment).

Special equipment WM-S30, version R

Version R (sliding-two-stage or modulating)		WM-S30/1-A	WM-S30/2-A	WM-S30/3-A
Combustion head extension	by 150 mm	Please enquire	Please enquire	Please enquire
	by 300 mm	Please enquire	Please enquire	Please enquire
Burner-mounted KS20 controller (W-FM 50)		250 033 15	250 033 15	250 033 15
W-FM 100 (suitable for continuous firing)		040.004.50	040.004.50	040 004 50
in lieu of W-FM 50 1)	burner-mounted	210 031 50	210 031 50	210 031 50
	supplied loose	210 032 64	210 032 64	210 032 64
Integral load controller and analogue signal conver	tor for W-FM 100	110 017 18	110 017 18	110 017 18
W-FM 200 in lieu of W-FM 50, with integral load controller, analogue signal convertor, and VSD				
module, with optional fuel metering	burner-mounted	210 031 51	210 031 51	210 031 51
	supplied loose	210 032 62	210 032 62	210 032 62
VSD with integral frequency convertor (W-FM 50)	200 required) ²⁾	210 030 97	210 031 48	210 031 49
VSD with separate frequency convertor (W-FM 20 (See accessories list for frequency convertor) 2)	0 required)	210 030 98	210 030 98	210 031 00
ABE with Chinese-character display, supplied loos	e (W-FM 100/200)	110 018 53	110 018 53	110 018 53
SQM48/35 Nm oil regulator actuator (W-FM100/200)		210 032 50	210 032 50	210 032 50
DSB158 minimum pressure switch in supply 1)		210 032 52	210 032 52	210 032 52
QRI flame sensor in lieu of QRB 1)		210 030 24	210 030 24	210 030 24
LGW 50 air pressure switch 1)		210 031 39	210 031 39	210 031 39
Inverted air inlet, with flange for ducted-air connec (LGW 50 also required)	tion and LGW air pressure switch	210 031 18	210 031 18	210 031 18
WEV 3.1/01 oil preheater in lieu of WEV 2.2/01		210 032 53	210 032 53	-
WEV 3/01 oil preheater in lieu of WEV 2.2/01		-	210 032 54	-
Pressure gauge with ball valve on pump		110 002 82	110 002 82	110 002 82
Pressure gauge with ball valve in return		110 011 50	110 011 50	110 011 50
Vacuum meter with ball valve		110 017 00	110 017 00	110 017 00
UHE oil pump (hardened execution)		Please enquire	Please enquire	Please enquire
Heated oil lines between pump and solenoid valve		210 032 51	210 032 51	210 032 51
Heated oil hoses, 1300 mm in lieu of 1000 mm		210 032 48	-	-
Heated oil hoses, 1500 mm in lieu of 1300 mm		-	210 032 49	210 032 49

 $^{^{\}rm 1)}$ Required for PED (2014/68/EU) compliance.

 $^{^{2)}}$ VSD with ZM-R version burners: General conditions for modulating load control when firing on oil - Frequency: min. 35 Hz - Turndown: max. 3:1

Special equipment WM-GS20, version ZM-R

Version ZM-R		WM-GS20/2-A	WM-GS20/3-A
Combustion head extension	by 100 mm	Please enquire	Please enquire
	by 200 mm	Please enquire	Please enquire
	by 300 mm	Please enquire	Please enquire
W-FM 100 supplied loose in lieu of fitted		210 032 59	210 032 59
Integral load controller and analogue signal convertor for V	V-FM 100	110 017 18	110 017 18
W-FM 200 in lieu of W-FM 100 with integral load controlle			
analogue signal convertor, and VSD module with optional f metering	uei supplied loose	210 032 60	210 032 60
	supplied loose	210 032 61	210 032 61
VSD with integral frequency convertor (W-FM 200 require	d) ²⁾	210 030 40	210 030 40
VSD with separate frequency convertor (W-FM 200 require (See accessories list for frequency convertor) 2)	ed)	210 030 41	210 030 41
ABE with Chinese-character display, supplied loose		110 018 53	110 018 53
SQM48/35 Nm oil regulator actuator		210 032 50	210 032 50
High gas pressure switch 1)	GW 50 A6/1	250 033 30	250 033 30
Screwed W-MF/DMV for low-pressure supplies)	GW 150 A6/1	250 033 31	250 033 31
(colonica ii iii , ziii ii io ii produce cappiloo)	GW 500 A6/1	250 033 32	250 033 32
High gas pressure switch 1)	GW 50 A6/1	150 017 49	150 017 49
Flanged DMV/VGD for low-pressure supplies)	GW 150 A6/1	150 017 50	150 017 50
	GW 500 A6/1	150 017 51	150 017 51
High gas pressure switch 1)	GW 50 A6/1	250 033 33	250 033 33
Fitted to high-pressure regulator)	GW 150 A6/1	250 033 34	250 033 34
	GW 500 A6/1	250 033 35	250 033 35
DSB158 pressure switch in supply 1)		210 032 52	210 032 52
Solenoid valve for air pressure switch test with continuous	run fan or post-purge	250 030 21	250 030 21
Air inlet flange for ducted-air connection, with LGW air pre	ssure switch	210 030 47	210 030 47
Inverted air inlet, with flange for ducted-air connection and LGW air pressure switch		Please enquire	Please enquire
Pressure gauge with ball valve on pump		110 002 82	110 002 82
Pressure gauge with ball valve in return		110 011 50	110 011 50
Vacuum meter with ball valve		110 017 00	110 017 00
UHE oil pump (hardened execution)		Please enquire	Please enquire
Heated oil lines between pump and solenoid valve		210 032 51	210 032 51
Oil hoses, 1300 mm in lieu of 1000 mm		Please enquire	Please enquire
Motor with 230 V contactor and overload protection 3)		250 030 95	250 030 95

¹⁾ Required for PED (2014/68/EU) compliance.

 $^{^{2)}\,\}mbox{VSD}$ with ZM-R version burners: General conditions for modulating load control when firing on oil:

[–] Frequency: min. 35 Hz

⁻ Turndown: max. 3:1

³⁾ The necessary motor protection can be provided either by a motor protection switch (supplied and fitted into a panel by others), or with integral motor overload protection (see special equipment).

Special equipment WM-GS30, version ZM-R

Version ZM-R		WM-GS30/1-A	WM-GS30/2-A	WM-GS30/3-A
Combustion head extension	by 150 mm	Please enquire	Please enquire	Please enquire
	by 300 mm	Please enquire	Please enquire	Please enquire
W-FM 100 supplied loose in lieu of fitted		210 032 59	210 032 59	210 032 59
Integral load controller and analogue signal convertor for W-F	M 100	110 017 18	110 017 18	110 017 18
W-FM 200 in lieu of W-FM 100 with integral load controller,				
analogue signal convertor, and VSD module with optional fue metering	l burner-mounted	210 032 60	210 032 60	210 032 60
Ü	supplied loose	210 032 61	210 032 61	210 032 61
VSD with integral frequency convertor (W-FM 200 required)	2)	210 030 97	210 031 48	210 031 49
VSD with separate frequency convertor (W-FM 200 required				
(See accessories list for frequency convertor) 2)		210 030 98	210 030 98	210 031 00
ABE with Chinese-character display, supplied loose		110 018 53	110 018 53	110 018 53
SQM48/35 Nm oil regulator actuator		210 032 50	210 032 50	210 032 50
High gas pressure switch 1)	GW 50 A6/1	250 033 30	250 033 30	250 033 30
(Screwed W-MF/DMV for low-pressure supplies)	GW 150 A6/1	250 033 31	250 033 31	250 033 31
	GW 500 A6/1	250 033 32	250 033 32	250 033 32
High gas pressure switch 1)	GW 50 A6/1	150 017 49	150 017 49	150 017 49
(Flanged DMV / VGD for low-pressure supplies)	GW 150 A6/1	150 017 50	150 017 50	150 017 50
	GW 500 A6/1	150 017 51	150 017 51	150 017 51
High gas pressure switch 1)	GW 50 A6/1	250 033 33	250 033 33	250 033 33
(Fitted to high-pressure regulator)	GW 150 A6/1	250 033 34	250 033 34	250 033 34
	GW 500 A6/1	250 033 35	250 033 35	250 033 35
DSB158 pressure switch in supply 1)		210 032 52	210 032 52	210 032 52
Solenoid valve for air pressure switch test with continuous-ru	n fan or post-purge	250 030 21	250 030 21	250 030 21
Inverted air inlet, with flange for ducted-air connection and LC	GW air pressure switch	210 031 18	210 031 18	210 031 18
Pressure gauge with ball valve on pump		110 002 82	110 002 82	110 002 82
Pressure gauge with ball valve in return		110 011 50	110 011 50	110 011 50
Vacuum meter with ball valve		110 017 00	110 017 00	110 017 00
UHE oil pump (hardened execution)		Please enquire	Please enquire	Please enquire
Heated oil lines between pump and solenoid valve		210 032 51	210 032 51	210 032 51
WEV 3.1/01 oil preheater in lieu of WEV 2.2/01		210 032 53	210 032 53	-
WEV 3/01 oil preheater in lieu of WEV 2.2/01		-	210 032 54	-
Oil hoses, 1300 mm in lieu of 1000 mm		Please enquire	-	-
Motor with star-delta combination and overload protection 3)		250 032 61	250 032 61	250 033 29

¹⁾ Required for PED (2014/68/EU) compliance.

²⁾ VSD with ZM-R version burners: General conditions for modulating load control when firing on oil:

when firing on oil:
- Frequency: min. 35 Hz

⁻ Turndown: max. 3:1

³⁾ The necessary motor protection can be provided either by a motor protection switch (supplied and fitted into a panel by others), or with integral motor overload protection (see special equipment).

Technical data Oil burners

Oil burners		WM-S10/1-A Z	WM-S10/2-A Z	WM-S10/3-A T	WM-S10/4-A T
Burner motor	Weishaupt type	WM-D 90/90-2/1K0	WM-D 90/90-2/1K0	WM-D 90/110-2/1K5	WM-D 90/110-2/1K5
Motor power output	kW	0.9	0.9	1.5	1.5
Nominal current	А	2.2	2.2	3.2	3.2
Motor protection switch 1) or motor prefusing 1)	type (e.g.) A minimum	PKE12/XTU-4 10 gG/T (by others)	PKE12/XTU-4 10 gG/T (by others)	PKE12/XTU-4 16 gG/T (by others)	PKE12/XTU-4 16 gG/T (by others)
Speed (50 Hz)	rpm	2900	2900	2900	2900
Combustion manager	type	W-FM 50	W-FM 50	W-FM 50	W-FM 50
Flame monitoring	type	QRB	QRB	QRB	QRB
Air damper actuator	type	STE 50	STE 50	STE 50	STE 50
Integral pump max. flow rate	type I/h	E4 200	E4 200	E4 200	E4 200
Oil preheater Electrical rating	type kW	EV2A 2.2	EV2B 4.5	EV2B 4.5	EV2B 4.5
Oil hoses	DN/length	13/1000	13/1000	13/1000	13/1000
Mass	kg	approx. 70	approx. 77	approx. 77	approx. 77

Oil burners		WM-S20/2-A R	WM-S20/3-A R
Burner motor	Weishaupt type	WM-D 112/140-2/3K5	WM-D 112/170-2/4K5
Motor power output	kW	3.5	4.5
Nominal current	A	7.2	9.2
Motor protection switch 1) or motor prefusing 1)	type (e.g.) A minimum	PKE12/XTU-12 25 A gG/T (by others)	PKE12/XTU-12 35 A gG/T (by others)
Speed (50 Hz)	rpm	2940	2930
Combustion manager	type	W-FM 100	W-FM 100
Flame monitoring	type	QRI	QRI
Air damper/oil actuator	type	SQM 45	SQM 45
Integral pump max . flow rate	type I/h	TA2 525	TA3 785
Oil preheater Electrical rating	type kW	EV2C 6.6	EV2D 13.2
Oil hoses	DN/length	20/1000	20/1000
Mass	kg	approx.140	approx. 155

¹⁾ The necessary motor protection can be provided either by a motor protection switch (supplied and fitted into a panel by others), or with integral motor overload protection (see special equipment).

The execution of the WM-S20 burner parallels that of the WM-GS20, save that an electromagnetic clutch, air pressure switch, double gas valve assembly, gas butterfly valve, and gas butterfly valve actuator are not included. The gas mixing chamber is closed off with a blanking flange.

Voltages and frequencies:

The burners are equipped as standard for three-phase alternating current, 400 V, $3 \sim$, 50 Hz. Other voltages and frequencies are available on application.

Standard burner motor: Insulation Class F, IP 55 protection. IE3 Premium Efficiency.

Technical data Oil burners

Oil burners		WM-S30/1-A R	WM-S30/2-A R	WM-S30/3-A R
Burner motor	Weishaupt type	WM-D 132/170-2/7K5	WM-D 132/210-2/10K0	WM-D 132/210-2/14K0
Motor power output	kW	7.5	10.0	14.0
Nominal current	А	15.0	22.0	28.0
Motor protection switch 1) or motor prefusing 1)	type (e.g.) A minimum	PKE32/XTU-32 25 A gG/T (by others)	PKE32/XTU-32 35 A gG/T (by others)	PKE32/XTU-32 50 A gG/T (by others)
Speed (50 Hz)	rpm	2940	2940	2920
Combustion manager	type	W-FM 50	W-FM 50	W-FM 50
Flame monitoring	type	QRB	QRB	QRB
Air damper/oil actuator	type	STE50	STE50	STE50
Integral pump max. flow rate	type I/h	TA3 785	TA4 1050	TA5 1410
Oil preheater Electrical rating	type kW	WEV 2.2/01 13.8	WEV 2.2/01 13.8	WEV 3/01 22.4
Oil hoses	DN/length	20/1000	25/1300	25/1300
Mass	kg	approx. 187	approx. 207	approx. 217

 $^{^{\}mbox{\scriptsize 1)}}$ The necessary motor protection can be provided either by a motor protection switch (supplied and fitted into a panel by others), or with integral motor overload protection (see special equipment).

Voltages and frequencies:

The burners are equipped as standard for three-phase alternating current, 400 V, 3 \sim , 50 Hz. Other voltages and frequencies are available on application.

Standard burner motor: Insulation Class F, IP 55 protection. IE3 Premium Efficiency.

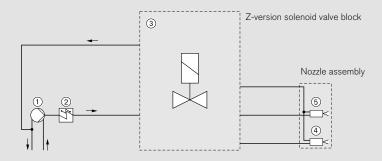
Technical data Dual-fuel burners

Dual-fuel burners		WM-GS20/2-A ZM-R	WM-GS20/3-A ZM-R
Burner motor	Weishaupt type	WM-D 112/140-2/3K5	WM-D 112/170-2/4K5
Motor power output	kW	3.5	4.5
Nominal current	A	7.2	9.2
Motor protection switch ¹⁾ or motor prefusing ¹⁾	type (e.g.) A minimum	PKE12/XTU-12 25 A gG/T (by others)	PKE12/XTU-12 35 A gG/T (by others)
Speed (50 Hz)	rpm	2940	2930
Combustion manager	type	W-FM 100	W-FM 100
Flame monitoring	type	QRI	QRI
Air damper/gas/oil actuator	type	SQM 45	SQM 45
Integral pump max. flow rate	type I/h	TA2 525	TA3 785
Oil preheater Electrical rating	type kW	EV2C 6.6	EV2D 13.2
Oil hoses	DN/length	20/1000	20/1000
Mass (excluding double gas valve assembly and fittings)	kg	approx. 140	approx. 155

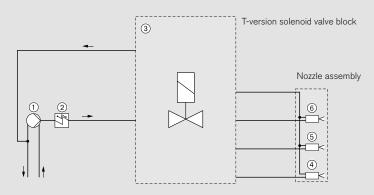
Dual-fuel burners		WM-GS30/1-A ZM-R	WM-GS30/2-A ZM-R	WM-GS30/3-A ZM-R
Burner motor	Weishaupt type	WM-D 132/170-2/7K5	WM-D 132/210-2/10K0	WM-D 132/210-2/14K0
Motor power output	kW	7.5	10.0	14.0
Nominal current	A	15.0	22.0	28.0
Motor protection switch ¹⁾ or motor prefusing ¹⁾	type (e.g.) A minimum	PKE32/XTU-32 25 A gG/T (by others)	PKE32/XTU-32 35 A gG/T (by others)	PKE32/XTU-32 50 A gG/T (by others)
Speed (50 Hz)	rpm	2940	2940	2920
Combustion manager	type	W-FM 100	W-FM 100	W-FM 100
Flame monitoring	type	QRI	QRI	QRI
Air damper/gas/oil actuator	type	SQM45	SQM45	SQM45
Integral pump max. flow rate	type I/h	TA3 785	TA4 1050	TA5 1410
Oil preheater Electrical rating	type kW	WEV 2.2/01 13.8	WEV 2.2/01 13.8	WEV 3/01 22.4
Oil hoses	DN/length	20/1000	25/1300	25/1300
Mass (excluding double gas valve assembly and fittings)	kg	арргох. 214	approx. 234	approx. 244

¹⁾ The necessary motor protection can be provided either by a motor protection switch (supplied and fitted into a panel by others), or with integral motor overload protection (see special equipment).

Voltages and frequencies: The burners are equipped as standard for three-phase alternating current, 400 V, 3 \sim , 50 Hz. Other voltages and frequencies are available on application.

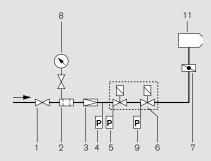

Standard burner motor: Insulation Class F, IP 55 protection. IE3 Premium Efficiency.

Fuel systems WM-S10


Operating sequence

Oil at pump pressure is present at the solenoid valves during prepurge. When the pre-ignition sequence is started the oil begins to circulate. At the end of the circulation time (pre-ignition time), the solenoid valves are activated to ignite the burner. The combustion manager switches the second-stage solenoid valve (or second and third-stage solenoid valves on three-stage burners) in response to heat demand.

Two-stage fuel system


Three-stage fuel system

- ① Burner-mounted oil pump
- ② Oil preheater
- 3 Solenoid valve block
- 4 Stage 1 oil nozzle
- ⑤ Stage 2 oil nozzle
- 6 Stage 3 oil nozzle

Fuel systems WM-(G)S20 and WM-(G)S30

Gas-side fuel system W-FM 100/200

- Ball valve *
- Gas filter
- Pressure regulator, (LP) or (HP) *
- High gas pressure switch
- Low gas pressure switch
- Double gas valve assembly
- Gas butterfly valve
- Pressure gauge with push-button valve *
- Valve-proving pressure switch
- Low gas / valve-proving pressure switch
- Burner

* Not included in burner price

Mounting position of the high gas pressure

- On the regulator outlet of HP trains
- After the regulator of screwed LP trains
- On the valve assembly inlet of flanged LP trains

switch:

Cable length approx. 2.5 m.

Layout of the valve train Support of the valve train

On boilers with hinged doors, the valve train must be mounted on the opposite side to the boiler-door hinges.

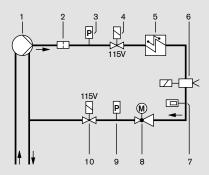
Compensator

To enable a tension free mounting of the valve train, the fitting of a compensator is strongly recommended.

Break points in the valve train

Break points in the valve train should be provided to enable the door of the heat generator to be swung open. The main gas line is best separated at the compensator.

The valve train should be properly supported in accordance with the site conditions. See the Weishaupt accessories list for various valve train support components.


Gas meter

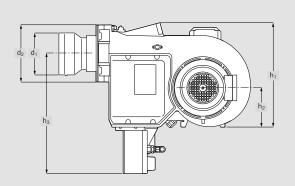
A gas meter must be installed to measure gas consumption during commissioning and servicing.

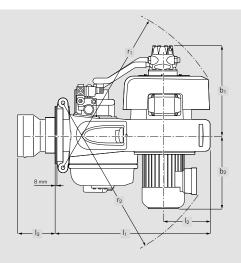
Optional thermal shutoff (when required by local regulations)

Integrated into the ball valve of screwed valve trains. A separate component with HTB seals fitted before the ball valve on flanged valve trains.

Oil-side fuel system Version (ZM-)R

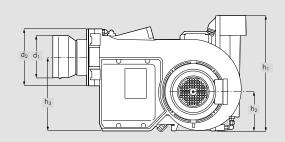
- Oil pump
- 2 Strainer
- 3 Min. oil pressure switch (optional)
- Supply solenoid valve (115 V with 230 V power supply, fitted in direction of flow)
- Oil preheater
- Nozzle head with regulating nozzle
- Return temperature sensor
- Oil regulator
- Max. oil pressure switch
- Return solenoid valve (115 V with 230 V power supply, fitted against direction of flow)

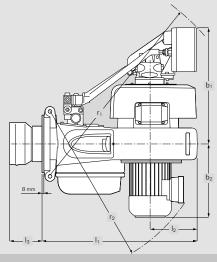

Oil circulation unit


An optional oil meter, to measure oil throughput and thus determine the burner's firing rate, is recommended for commissioning.

The oil circulation unit developed by Weishaupt only needs one oil meter, due to the separation of the burner supply loop from the oil ring main.

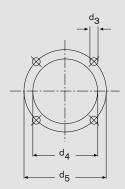
Dimensions


Underslung oil preheater (standard)

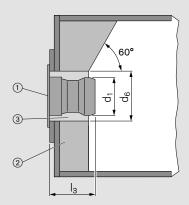


Burner	Dime	nsions	in mm													
type	I ₁	I_2	l ₃	b ₁	b_2	h ₁	h_2	h ₃	d ₁	d_2	d ₃	d_4	d ₅	d_6	r ₁	r ₂
WM-S10/1-A Z	659	205	118-128	381	307	445	167	512	131	242	M10	165	186	170	718	682
WM-S10/2-A Z	659	205	113-133	381	307	445	167	512	140	242	M10	165	186	170	718	682
WM-S10/3-A T	659	205	133-153	381	335	445	167	512	160	242	M10	185	210	200	718	698
WM-S10/4-A T	659	205	138-158	381	335	445	167	512	180	242	M10	185	210	220	718	698

Side-mounted oil preheater (optional)

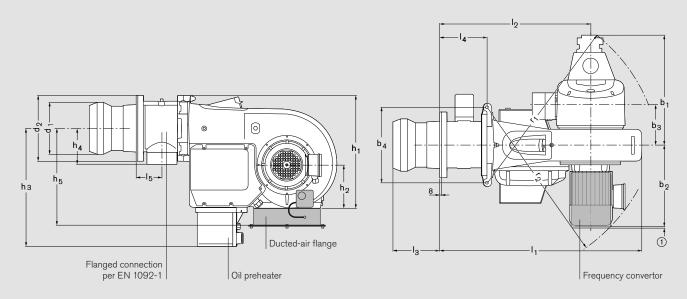


Burner	Dime	nsions	in mm													
type	I ₁	I_2	l ₃	b ₁	b_2	h ₁	h_2	h ₃	d ₁	d_2	d ₃	d_4	d ₅	d ₆	r ₁	r ₂
WM-S10/1-A Z	659	205	118-128	495	307	489	167	313	131	242	M10	165	186	170	881	682
WM-S10/2-A Z	659	205	113-133	495	307	489	167	313	140	242	M10	165	186	170	899	682
WM-S10/3-A T	659	205	133-153	495	335	489	167	313	160	242	M10	185	210	200	899	698
WM-S10/4-A T	659	205	138-158	495	335	489	167	313	180	242	M10	185	210	220	899	698


All dimensions are approximate. Weishaupt reserve the right to make changes in light of future developments.

Burner mounting

Mounting-plate drilling dimensions


Heat generator preparation

- 1 Flange gasket
- ② Refractory
- 3 Aperture

The refractory (2) must not protrude beyond the front edge of the combustion head. It may however be tapered (min. 60°).

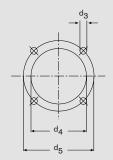
Dimensions

Optional

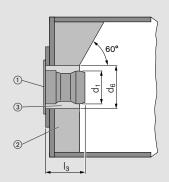
Burner type	Dimen	sions in	ı mm I ₃	I ₄	I ₅	b ₁	b_2	b ₃	b ₄	h ₁	h_2	h ₃	h ₄	h ₅
WM-S20/2-A R	1010	757	231-266	238	128	420	424	209	380	573	225	600	182	470
WM-S20/3-A R	1010	757	231-256	238	128	420	464	209	380	573	225	600	182	470
WM-GS20/2-A ZM-R	1010	757	231–266	238	128	545	424	209	380	573	225	600	182	470
WM-GS20/3-A ZM-R	1010	757	231–256	238	128	545	464	209	380	573	225	600	182	470

 $^{^{\}scriptsize \textcircled{\scriptsize 1}}$ Additional projection with frequency convertor approx. 20 mm

All dimensions are approximate. Weishaupt reserve the right to make changes in light of future developments.


The execution of the WM-S20 burner parallels that of the WM-GS20, save that an electromagnetic clutch, air pressure switch, double gas valve assembly, gas butterfly valve, and gas butterfly valve actuator are not included. The gas mixing chamber is closed off with a blanking flange.

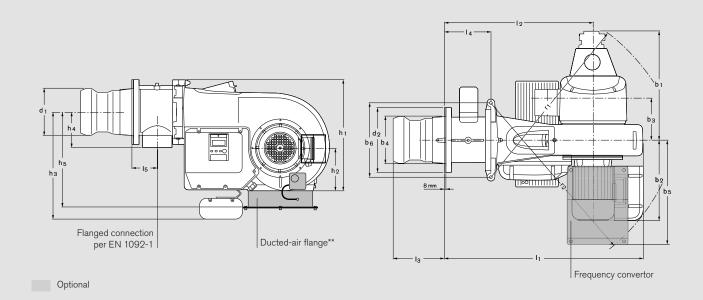
Burner mounting


Underside of ducted-air flange

324 304 280 40101 To

Mounting-plate drilling dimensions

Heat generator preparation

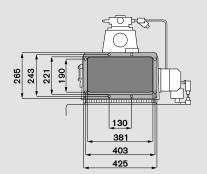

- 1 Flange gasket
- ② Refractory
- 3 Aperture

The refractory ② must not protrude beyond the front edge of the combustion head. It may however be tapered (min. 60°).

Burner type	Dimer r ₁	nsions in	mm d ₁	d_2	d ₃	d_4	d_5	d ₆	Nominal diameter of the gas butterfly
WM-S20/2-A R	925	869	250	330	M12	270	298	290	Blanked flange
WM-S20/3-A R	925	883	260	330	M12	270	298	290	Blanked flange
WM-GS20/2-A ZM-R	925	869	250	330	M12	270	298	290	DN65
WM-GS20/3-A ZM-R	925	883	260	330	M12	270	298	290	DN65

All dimensions are approximate.
Weishaupt reserve the right to make changes in light of future developments.

Dimensions

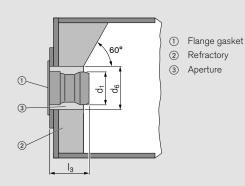

Burner type	Dimen	sions in	mm I ₃	I ₄	I ₅	b ₁	b_2	b ₃	b ₄	b ₅	b ₆	r ₁	r ₂ *
WM-S30/1-A R	941	622	301–326	43	-	484	508	261	301	570	440	992	1111
WM-S30/2-A R	941	622	301-326	43	-	488	548	261	301	670	440	992	1137
WM-S30/3-A R	956	637	285-325	58	-	494	548	261	301	670	440	992	1137
WM-GS30/1-A ZM-R	1146	827	349-374	248	128	615	508	261	301	570	440	1052	1111
WM-GS30/2-A ZM-R	1146	827	349-374	248	128	619	548	261	301	670	440	1055	1137
WM-GS30/3-A ZM-R	1166	847	349-389	268	148	625	548	261	348	670	440	1059	1137

All dimensions are approximate. Weishaupt reserve the right to make changes in light of future developments.

Excluding frequency convertor.
 ** Ducted-air flange only with inverted air inlet or free-standing oil preheater station.

Burner mounting

Underside of ducted-air flange



Mounting-plate drilling dimensions

WM 30/3

WM 30/1 and WM 30/2

Heat generator preparation

The refractory ② must not protrude beyond the front edge of the combustion head. It may however be tapered (min. 60°).

Burner type	Dimen h ₁	nsions in I	mm h ₃	h ₄	h ₅	d ₁	d_2	d ₃	d_4	d_5	d_6	Nominal diameter of the gas butterfly
WM-S30/1-A R	695	256	685	-	621	290	380	M12	305	330	360	-
WM-S30/2-A R	695	256	685	-	621	300	380	M12	305	330	360	-
WM-S30/3-A R	730	256	705	-	621	367	450	M12	375	400	420	-
WM-GS30/1-A ZM-R	695	256	685	212	621	290	380	M12	305	330	360	DN 80
WM-GS30/2-A ZM-R	695	256	685	212	621	300	380	M12	305	330	360	DN 80
WM-GS30/3-A ZM-R	730	256	705	232	621	367	450	M12	375	400	420	DN 80

^{*} Ducted-air flange only with inverted air inlet or free-standing oil preheater station.

All dimensions are approximate.
Weishaupt reserve the right to make changes in light of future developments.

Max Weishaupt GmbH 88475 Schwendi Tel +49 7353 830 Fax +49 7353 83358 www.weishaupt.de

Print No. 83**2121**02, December 2017 Printed in Germany. All rights reserved.

Neachells Lane, Willenhall, WV13 3RG Tel (01902) 609841

Weishaupt worldwide:

Branch offices across Germany and numerous subsidiary companies, representatives and agents across the world provide local support.

Germany:	Leipzig
Augsburg	Mannheim
Berlin	Munich
Bremen	Münster
Cologne	Neuss
Dortmund	Nuremberg
Dresden	Regensburg
Erfurt	Reutlingen
Frankfurt	Rostock
Freiburg	Schwendi
Hamburg	Siegen
Hanover	Stuttgart
Karlsruhe	Trier
Kassel	Wangen
Koblenz	Würzburg

Subsidiaries:
Belgium
Bosnia
Brasil
Canada
Croatia
Czech Republic
Denmark
France
Hungary
Italy
Poland
Romania
Serbia
Slovakia

South Africa				
Sweden				
Switzerland (E)				
United Kingdo				
USA				
Representation				
Bulgaria				
China				
Lithuania				
Agencies:				
Algeria				
Australia				
Austria				
Bangladeh				

Slovenia

Cyprus	Lebanon
Egypt	Luxembour
Estonia	Malaysia
Finland	Macedonia
Greece	Moldova
India	Morocco
Indonesia	Netherland
Iran	New Zealar
Ireland	Nigeria
Israel	Norway
Japan	Pakistan
Jordan	Philippines
Korea (South)	Portugal
Kuwait	Russia
Latvia	Singapore

anon	Spain
embourg	Switzerland (V
aysia	Syria
edonia	Taiwan
dova	Thailand
оссо	Tunisia
nerlands	Turkey
/ Zealand	Ukraine
eria	UAE
way	Vietnam
stan	